

Modeling Heat Transfer in SEN during Preheating & Cool-down

Yonghui Li (Ph.D. Student)

Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign

Project Background (long term goals)

- SEN Preheating Prevent thermal shock cracks
- Cool down process → Transport the preheated SEN
- Initial Casting Immersion → Possible skulling in mold and associated defects
- 3D commercial software model
 ⇒ Long time& expansive
 - ⇒ 1D User friendly Visual Basic Application

Background: Torch preheating experiment for model validation

Background: Torch preheating experiment for model validation

Infra-red thermal image Fla

Flame profile across SEN bore

University of Illinois at Urbana-Champaign

Model Approach

- Combustion, Fluid flow, and Heat Transfer in and near Nozzle with 2-D axisymmetric FLUENT model
- Post processing to get heat transfer coefficients
- Heat conduction in nozzle wall with 3-D FLUENT model for validation of VBA model
- VBA model of heat transfer in nozzle wall (simple Excel spread-sheet model)

Metals Processing Simulation Lab

VBA Model^{[2]*} Main Page

Geometry of Nozzle	75 70		1		Clear
Eater Number of Imme	15.19	mm			
Enter Number of layers	0.82			Assig	n Refractory
Enumesonity	0.02			Pr	operties
Proheat	10.0	10	-		
Ampient remperature	19.0	-0			
PEN initial Nozzle Temperature	19.0	10	-		
SETV miler wait remperature	003.0	0	-		
Internal heat transfer Coefficient(TC1 location)	50.9	VV/(m*K)	-	Droho	at Simulation
External heat transfer Coefficient	35.25	W/(m*K)	-	Frenes	a Simulation
Preheat Time	115.0	min	-		
Time Step	0.00	S	-	View F	Preheat Plots
Time Interval between printing	0.5	min,	40	20	120
Points to plot form start of prenear (min.)	0	10.76	32.46	40.7	41.4
Points to prot temperature, Distance nom outer sunace (nim) [10.70	32.10	40.7	1 41/4
Cooldown					
Ambient Temperature (Outside)	20.0	°C			
Ambient Temperature (Inside)	436.0	*C			
Internal heat transfer Coefficient	20.00	W/(m ² K)		Cooldo	wn Simulation
External heat transfer Coefficient	20	W/(m ² K)			
Cooldown Time	277.7	min.			
Time Step	0.00	5		View C	ooldown Plots
Time interval between printing	0.5	min	12.5	14	- 71 - 7 AS
Times to plot from start of cooldown (min.)	1	2	5	10	15
Points to plot temperature, Distance from outer surface (mm)	0	10.76	32.16	40.7	41.4
Casting					
Pour Temperature	1550.0	"C		Anning	Canal Deservation
Solidification Temperature	1525.0	°C		Assign	Steel Propertie
Ambient Temperature (Outside)	19.0	"C	_		
Internal heat transfer Coefficient	33594.11	W/(m ² K)		Casti	ing Simulation
External heat transfer Coefficient (free)	35.3	W/(m ² K)			<u></u>
Casting Time	5.0	min.		100	
Time Step	0.00	5		View	Casting Plots
Time Interval between printing	0.02	min.	1		
Steel Layer thickness	10.0	mm			
Steel Layer mesh size	0.5	mm	-	4	
limes to plot from start of casting (min.)	0.5	1	1.5	2	5

Metals Processing Simulation Lab

University of Illinois at Urbana-Champaign

Assumption of Rosebud and Velocity

Consortium						
	Mul There are 24 diameter cer the 25 holes	tiport Rose 4 diameter a hter hole on is 5.027e-5	bud simplif bout 1.6mm the Rosebu m ^{2.} .	ication holes d. The	n and 1 total	0.8mm area of
	All Runs*	Flow rate (CFM)	Flow rate (m ³ /s)	Press (PS	sure I)	Pressure (Pa)
Ξ5	Oxygen	6	2.832e-3	45	5	3.103e5
	Gas(CH4)	7.5	3.540e-3	9		6.206e4
Ideal gas law $P\dot{V} = n\dot{R}T$ The molar rate ratio		$=\frac{P_{02}\dot{V}_{02}+}{P_a}$	$\frac{P_{CH4}\dot{V}_{CH4}}{tm} =$	= 17.12	2e – 3	3 m3/s
of CH4 and O2 $\frac{\dot{n}_{CH4}}{\dot{n}_{O2}} = \frac{P_{CH4}}{P_{O2}} \cdot \frac{\dot{V}_{CH4}}{\dot{V}_{O2}} \cdot \frac{T_{O2}}{T_{CH4}} = \frac{33.1}{66.8}$	6% 4%	$_{ocity} = \frac{\dot{V}_{tota}}{Area}$	$\frac{l}{l} = 342.60$	m/s	Artific decre rate t supe instal	ially ased flow o avoid rsonic bility.
University of Illinois at Urbana-Champaign		y at the Ro	sebud is 3	30m/s.	Yo	nghuiti 10
Oniversity of minors at Orbana-Champaign		i roccosing olinulatio			10	

Combustion Model Settings onsortium

Casting

	Steady state, 2D Axisymmetric			
	Energy conservation			
Model	Standard k-epsilon, Standard Wall Function			
	Species transport volumetric model (inlet diffusion, diffusion energy source, thermal diffusion, finite-rate/eddy dissipation)			
	Mixture (eg: CH4, O2, CO2, H2O, N2)			
	Density: incompressible ideal gas			
Material	Specific heat: mixing law			
Material	Thermal conductivity0.0454 W/m K, Viscosity1.72e-5 kg/m s			
	Mass diffusivity: kinetic theory			
Solver	Pressure based solver			
Pressure Schemes	SIMPLE, 2 nd order upwind			
Momentum, Energy, Species Discretization	1 st order upwind			
iversity of Illinois at Urbana-Champaign	Metals Processing Simulation Lab Metals Processing Simulation Lab			

Combustion Model Governing Equation

Fluid flow Model Results^[6]

Combustion Model whole domain temperature contour[4]

Temperature distribution of whole domain

Gas temperature at different axial location of inner SEN

asting

Heat transfer coefficient and Entrained air mass flow rate

Location		Surface heat transfer coefficient
TC1 axial	Inner SEN wall	50.89 W/Km ²
level*	Outer SEN wall	35.25 W/Km ²
TC4 axial Inner SEN wall		34.43 W/Km ²
level*	Outer SEN wall	27.58 W/Km ²

nuous asting

Line surface across the SEN	Mass flow rate (Kg/s)
Mixture exit	6.135e-4
SEN inlet	39.590e-4
Net mass flow rate**	33.455e-4

Air entrainment relative to stoichiometric is 5.11% to input in Flame temperature VBA Model.

*Thermal couple 1, 3 and 5 are in the same axial level, the same as thermal couple 4 and 6. ** It is actually the entrained air mass flow rate. University of Illinois at Urbana-Champaign Metals Processing Simulation Lab

3-D FLUENT Setting:

Transient 3-layer Wall Model

Model	Energy
Momentum Schemes	2 nd order upwind
Energy Schemes	2 nd order upwind
Transient Formulation	1 st order implicit

B.C.:

Casting

Insortium

Inner SEN Wall	Free stream temperature 600degC heat transfer coefficient 70 W/m ² K
Outer SEN Wall	Free stream temperature 20degC heat transfer coefficient 20 W/m ² K

Time step: 1s

Total mesh: 308cells, 720 nodes

.

Computational domain: axisymmetric, 1/36 circle of SEN

Test Condition of FLUENT 3D Transient Model and VBA Model

Input conditions

Test conditions		Input	value			
Initial tempera	ature	20°C	20°C			
Inner gas tempe	erature	600 °С				
Outer air tempe	rature	20 °C				
Inner heat trans	fer coefficient	70 W/m ² K				
Outer heat trans	sfer coefficient	20 W/m ² K				
Inner radius		38 mm	38 mm			
Thickness of gla	aze layer	1 mm	1 mm			
Outer radius		76 mm	76 mm			
	Heat conductivity	20 W/m K				
Refractory	Density	2460 kg/m ³				
Specific heat		1500 J/kg K				
		Case 1 (no glaze)	Case 2			
Heat conductivity		20 W/m K	1 W/m K			
Gidze	Density	2460 kg/m ³	2400 kg/m ³			
	Specific heat	1500 J/kg K	1000 J/kg K			

Discretized Finite-Volume

The derivation is in Yonghui's VBA model governing equations20120408.docx. University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Yonghui Li 27

Casting

Results: Case 1&Case 2

Comparison of 3-layer VBA model and 3-D FLUENT model predictions of transient temperature in **1-layer** nozzle at inner and outer surface Comparison of 3-layer VBA model and 3-D FLUENT model predictions of transient temperature in **3-layer** nozzle at inner and outer surface

Glaze coating and wall refractory 3-layer case r-direction along nozzle wall temperature evolve histories

on tinuous Casting Consor

Temperature dependent <u>thermal properties feature</u>

- Validate VBA heat transfer model in preheating and cool down processes with FLUENT Model.
- FLUENT User Defined Function is used for the inner gas/air temperature (wall boundary) and heat transfer coefficients.

	Preheat	Cool down
Inner gas temperature(K)	1673.15	T=20+126exp(-0.000292(current time – preheat time))
Outer air temperature(K)	293.15	293.15
Inner h_convection (W/m ² K)	400	20
Outer h_convection(W/m ² K)	400	20
Initial temperature(K)	293.15	293.15

The input conditions come from experiment Run 2

Glaze material

Refractory material

Material	Glaze			Material	Doloma Graphite 2330 kg/m^3		
Density	2000 kg/m ³			Density			
Properties used in VBA	Temperature(degC)	Thermal conductivity(W/mK)	Specific Heat (J/kg K)	Properties used in VBA	Temperature(degC)	Thermal conductivity(W/m K)	Specific Heat (J/kg K)
	25	0.8555	835.0425		25	26.4528	753.3534
	200	1.2926	1031.0565		500	21.8180	1252.3953
	550	1.5409	1345.6037		750	19.7412	1360.4835
	1075	0.8312	1768.4251		1000	17.9143	1422.9122
	1425	0.0119	2130.1868		1500	15.0106	1598.2917
Properties used in FLUENT	T $k(T)=-0.4856+0.0059T-(5e-6)T^{2}+(e-9)T^{3}$		Properties used in FLUENT	$k(T) = 29.823 - 0.0119T + (2e-6)T^2$			
(SI unit)	Cp(T)=406.77+1.678	1T-0.0009T2+(3e-7)T3		(SI unit)	$Cp(T)=125.61+2.6275T-0.0019T^{2}+(5e-7)T^{3}$		2+(5e-7)T3

Compared VBA Model with Experiment data

VBA Model input conditions for Run2 (Experiment)

VBA Input conditions	Value	Source
Inner gas temperature	885-432*Exp (-time in second/1066) (degC)	Concluded from gas temperature histories from experiment
Outer air temperature	19 (degC)	LWB Experiment data
Inner h_convection	50.89 W/ m ² K	Combustion Model result
Outer h_convection	35.25 W/ m ² K	Combustion Model result
Emissivity of outer glaze	0.82	LWB Emissivity Testing
Emissivity of inner flame	1	Black body of inner SEN
Thermal properties	Slide 29 tables	LWB measurements
Preheat time	115	LWB Experiment data

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab •

Yonghui Li 33

Compare VBA and Experiment Results

Preheat temperature histories comparison

Conclusion

- The temperature predictions from combustion model reasonably match with experiment measurement.
- The combustion model / SEN model could be investigated in more detail (for other fuels, air mixtures, etc.) with parametric studies to optimize preheating times and provide guidelines for different conditions.
- The SEN model is the ready to apply to investigate casting.

Metals Processing Simulation Lab

University of Illinois at Urbana-Champaign

tinuous Casting Consortium

Acknowledgements

- Continuous Casting Consortium Members (ABB, ArcelorMittal, Baosteel, Tata Steel, Goodrich, Magnesita Refractories, Nucor Steel, Nippon Steel, Postech/ Posco, SSAB, ANSYS-Fluent)
- Rob Nunnington, LWB Refractories
- National Center for Supercomputing Applications (NCSA) at UIUC – "Tungsten" cluster

Reference

- [1] PB10 SEN Temperature Data for CCC Heat Flow Model, Magnesita Refractories Research report
- [2] Varun K. Singh, User-friendly model of heat transfer in submerged entry nozzle during preheating, cool down and casting
- [3] GAMBIT 2.2.30 software
- [4] Use FLUENT 13.0 software
- [5] FLUENT theory guide
- [6] CFD-Post software

C
Drinuous
Consortium

University of Illinois at Urbana-Champaign

Nomenclature

Metals Processing Simulation Lab

.

Symbol	Variable	Unit
V	volume	m ³
t	time	S
Δt	time step	S
r	radius	m
r_w	west node radius	m
r _e	east node radius	m
Δr	neighbor node distance	m
Δr_{PE}	east side node distance	m
Δr_{PW}	west side node distance	m
Т	temperature	°C
T_p^{n+1}	temperature of node p at new(n+1) time step	°C
T_p^n	temperature of node p at old (n) time step	°C
T _{aas}	inside gas temperature	°C
T _{air}	outside air temperature	°C
ρ	density	kg/m ³
Cp	specific heat	J/kg K
k	heat conductivity	W/m K
k_w	west side cell conductivity	W/m K
k _e	east side cell conductivity	W/m K
h_g	inside gas convective coefficient	W/m ² K
h _a	out air convective coefficient	W/m ² K