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• Initial Casting Immersion    Possible skulling
in mold and associated defects

Project Background
(long term goals)

• SEN Preheating

Transport the preheated
SEN

• Cool down process

• 3D commercial software model
Long time& expansive

1D User friendly Visual Basic Application

Prevent thermal shock 
cracks
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Background: Torch preheating 
experiment for model validation

Set-up[1] Thermal Couple temperature histories (Run2)

SEN wall 
temperature

Gas 
temperature
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Background: Torch preheating 
experiment for model validation

Flame profile across SEN boreInfra-red thermal image
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Model Approach

• Combustion, Fluid flow, and Heat Transfer 
in and near Nozzle with 2-D axisymmetric 
FLUENT model

• Post processing to get heat transfer 
coefficients

• VBA model of heat transfer in nozzle wall 
(simple Excel spread-sheet model)

• Heat conduction in nozzle wall with 3-D 
FLUENT model for validation of VBA model
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Background: VBA Model Scheme

VBA Spreadsheet Heat 
Transfer Model of SEN
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VBA Model[2]* Main Page

* From Varun K. Singh, User-friendly model of heat transfer in submerged entry nozzle 
during preheating, cool down and casting
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Current Objectives

• Use ANSYS software package to simulate natural 
gas and oxygen combustion in the preheating 
process.

• Obtain the temperature distribution of the SEN 
and heat transfer coefficients.

• Obtain entrained mass flow rate of air which also 
participate in the combustion.

• Validate 1D VBA heat transfer Model with 3D 
same conditions FLUENT Model.

• Use 1D VBA Model to match with experiment. 
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Combustion Model Assumption

• The combustion is a 2D axisymmetric 
process.

• The geometry of the SEN is simplified, and 
port is axisymmetric.

• One central equal area hole has the same 
effect on flame distribution.

• Natural gas is modeled as Methane (94% 
gas composition is methane). 

• Gas completely mixed before exit from 
rosebud.
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Assumption of Rosebud and Velocity

Multiport Rosebud simplification

There are 24 diameter about 1.6mm holes and 1 0.8mm 
diameter center hole on the Rosebud. The total area of 
the 25 holes is 5.027e-5 m2..

All Runs*
Flow rate 
(CFM)

Flow rate 
(m3/s)

Pressure
(PSI)

Pressure
(Pa)

Oxygen 6 2.832e-3 45 3.103e5

Gas(CH4) 7.5 3.540e-3 9 6.206e4

Ideal gas law

The molar rate ratio
of CH4 and O2  Artificially 

decreased flow 
rate to avoid 
supersonic 
instability.

Gas velocity at the Rosebud is 30m/s.
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Mesh and Geometry

• 2-D axisymmetric cylindrical combustor

• 219,624 nodes, 652,151 quadrilateral cells

• Mesh and geometry[3]

Pressure 
inlet (air) 

Fuel inlet
(multiport Rosebud 

nozzle)

Port Pressure 
outletSEN

Reaction Region

Fuel Inlet 30m/s, 800K, CH4 33.16%, O2 66.84%

Velocity inlet boundary condition 
Flow is turbulence

No-slip Wall with coupled conjugated heat transfer 

Symmetry axis

40mm
40mm
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Combustion Model Settings[4]

Model

Steady state, 2D Axisymmetric

Energy conservation

Standard k-epsilon, Standard Wall Function

Species transport volumetric model 
(inlet diffusion, diffusion energy source, 

thermal diffusion, finite-rate/eddy dissipation)

Material

Mixture (eg: CH4, O2, CO2, H2O, N2)

Density: incompressible ideal gas

Specific heat: mixing law

Thermal conductivity0.0454 W/m K,
Viscosity1.72e-5 kg/m s

Mass diffusivity: kinetic theory

Solver Pressure based solver

Pressure Schemes SIMPLE, 2nd order upwind

Momentum, Energy, 
Species Discretization 1st order upwind
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Combustion Model 
Governing Equation

2D Axisymmetric Continuity Equation[5] (Liquid flow)

2D Axisymmetric Momentum Equation (Liquid flow)

Energy Equation

Species Transport equations (eg. 5 for CH4, O2, N2, CO2, H2O) 

The Eddy-Dissipation Model
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Fluid flow Model Results[6]

Velocity distribution at steady state

Streamline distribution for the liquid flow
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Pressure distribution 

Pressure field
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Species Results: CH4 

Mole fraction contour of CH4

Mole fraction contour of O2
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Species Results: H2O, CO2

Mole fraction contour of CO2

Mole fraction contour of H2O
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Species of N2

Mole fraction contour of N2
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Combustion Model whole 
domain temperature contour[4]
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Temperature distribution of the upper SEN

Temperature distribution of whole domain
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Gas temperature at different 
axial location of inner SEN  
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Temperature in Nozzle 
Outer Wall

Surface temperature 

TC 4,6

TC 1,3,5

Infra-red picture 
of SEN outer
temperature

SEN temperature
contour from FLUENT
combustion model

Hottest part at the
similar location 

Both upper outer 
walls are colder
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Heat transfer coefficient and 
Entrained air mass flow rate

Location Surface heat transfer 
coefficient

TC1 axial
level*

Inner SEN wall 50.89 W/Km2

Outer SEN wall 35.25 W/Km2

TC4 axial
level*

Inner SEN wall 34.43 W/Km2

Outer SEN wall 27.58 W/Km2

Line surface across the SEN Mass flow rate (Kg/s)

Mixture exit 6.135e-4 

SEN inlet 39.590e-4

Net mass flow rate** 33.455e-4

*Thermal couple 1, 3 and 5 are in the same axial level, the same as thermal 
couple 4 and 6. ** It is actually the entrained air mass flow rate.

Air entrainment relative to stoichiometric is 5.11% to input 
in Flame temperature VBA Model. 
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VBA Heat Transfer Model 
Validation: geometry

Preheat Schematic 3 layers mesh in GAMBIT*

* Use GAMBIT 2.2.30 software.

VBA and FLUEMT Model nodes

inner glaze coating layer 4

wall refractory 37

outer glaze coating layer 4

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab •     Yonghui Li    24

3-D FLUENT Setting:
Transient 3-layer Wall Model 

Model Energy

Momentum Schemes 2nd order upwind

Energy Schemes 2nd order upwind

Transient Formulation 1st order implicit

B.C.:

Inner SEN Wall 
Free stream temperature 600degC
heat transfer coefficient 70 W/m2K

Outer SEN Wall
Free stream temperature 20degC
heat transfer coefficient 20 W/m2K

Time step: 1s Total mesh: 308cells, 720 nodes

Computational domain: axisymmetric, 1/36 circle of SEN 
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Test Condition of FLUENT 3D 
Transient Model and VBA Model

Input conditions 
Test  conditions Input value 

Initial temperature 20℃ 
Inner gas temperature 600 ℃  
Outer air temperature 20 ℃  
Inner heat transfer coefficient 70 W/m2K 
Outer heat transfer coefficient 20 W/m2K 
Inner radius  38 mm  
Thickness of glaze layer 1 mm 
Outer radius 76 mm 

Refractory 
Heat conductivity 20 W/m K 
Density 2460 kg/m3 
Specific heat 1500 J/kg K 

Glaze 

 Case 1 (no glaze) Case 2 
Heat conductivity 20 W/m K 1 W/m K 
Density 2460 kg/m3 2400 kg/m3 
Specific heat 1500 J/kg K 1000 J/kg K 
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Governing equation & boundary 
conditions for VBA Model

Governing Heat Transfer 
Equation

Boundary conditions

3-D Schematic of Nozzle

h_g T_gasNozzle 
wall

h_air
T_air

r

Interface 
cell

Interior 
cell

Refractory

Inside glaze Outside glaze

Boundary 
cell

1 2

1 2

PW E
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Discretized Finite-Volume 
Equations

Interface cell governing equation

݊ܶ݌ +1 = [1 − 2ݎ݁ݐ∆2 − 2ݓݎ ( ݎܲ∆݌ܥߩݎ݁݁݇ ܧ + ݎܲ∆݌ܥߩݓݎݓ݇ ܹ)] ݊ܶ݌ + 2ݎ݁)ݓݎݓ݇ݐ∆2 − ݎܲ∆݌ܥߩ(2ݓݎ ܹ 1݊−ܶ݌ + 2ݎ݁)ݎ݁݁݇ݐ∆2 − ݎܲ∆݌ܥߩ(2ݓݎ ܧ 1݊+ܶ݌  

The derivation is in Yonghui’s VBA  model governing equations20120408.docx. 

Interior cell governing equation

݊ܶ݌ +1 = ൬1 − 2ݎ∆ݐ∆ߙ2 ൰ ݊ܶ݌ + ቆ]ݐ∆ߙ 2ݎ∆1 − ቇݎ∆݌ݎ12 1݊−ܶ݌ + ቆ 2ݎ∆1 + ቇݎ∆݌ݎ12 1݊+ܶ݌ ] 
Inner boundary cell governing equation

1ܶ݊ +1 = (1 − 2ݎ∆ݎ݌ܥߩݐ∆2݇ ൬ݎ + 2ݎ∆ ൰ − (ݎ∆݌ܥߩℎ݃ݐ∆2 1ܶ݊ + ݎ∆݌ܥߩℎ݃ݐ∆2 2ܶ݊ + 2ݎ∆ݎ݌ܥߩݐ∆2݇ ൬ݎ + 2ݎ∆ ൰ ܶ݃ ݏܽ  

Outer boundary cell governing equationܶ݉݊+1 = ቆ1 − 2ݎ∆ݎ݌ܥߩ݇ݐ∆2 ൬ݎ − 2ݎ∆ ൰ − ቇݎ∆݌ܥߩℎܽݐ∆2 ܶ݉݊ + 2ݎ∆ݎ݌ܥߩ݇ݐ∆2 ൬ݎ − 2ݎ∆ ൰ ܶ݉ −1݊ + ݎ∆݌ܥߩℎܽݐ∆2 ܶܽ ݎ݅  
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Results: Case 1&Case 2
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Comparison of 3-layer VBA model and 
3-D FLUENT model predictions 
of transient temperature in 1-layer
nozzle at inner and outer surface 

Comparison of 3-layer VBA model and 3-D 
FLUENT model predictions of 
transient temperature in 3-layer 
nozzle at inner and outer surface 
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Result:  Case 2 temperature 
at different time

Glaze coating and wall refractory 3-layer case r-direction 
along nozzle wall temperature evolve histories
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Temperature dependent 
thermal properties feature

• Validate VBA heat transfer model in preheating and cool 
down processes with FLUENT Model.

• FLUENT User Defined Function is used for the inner gas/air 
temperature (wall boundary) and heat transfer coefficients. 

The input conditions come from experiment Run 2

Glaze material Refractory material
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Results: validated Temperature 
history in FLUENT and VBA
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VBA Transient Model temperature history compared with 
FLUENT Model at Inner Radius of SEN

Preheat Cool
down
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Results: validated Temperature 
history in FLUNET and VBA
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Compared VBA Model with 
Experiment data

VBA Input conditions Value Source

Inner gas temperature 
885-432*Exp (-time in
second/1066) 
(degC)

Concluded from gas 
temperature histories 

from experiment

Outer air temperature 19 (degC) LWB Experiment data

Inner h_convection 50.89 W/ m2K Combustion Model result

Outer h_convection 35.25 W/ m2K Combustion Model result

Emissivity of outer glaze 0.82 LWB Emissivity Testing

Emissivity of inner flame 1 Black body of inner SEN

Thermal properties Slide 29 tables LWB measurements

Preheat time 115 LWB Experiment data

VBA Model input conditions for Run2 (Experiment)
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Conclusion

• A fluid flow / heat transfer / combustion model has been 
developed and linked with VBA Model (via heat transfer 
coefficients) to predict behavior of nozzle during 
preheating.

• The temperature predictions from combustion model 
reasonably match with experiment measurement. 

• The combustion model / SEN model could be investigated 
in more detail (for other fuels, air mixtures, etc.) with 
parametric studies to optimize preheating times and 
provide guidelines for different conditions.

• The SEN model is the ready to apply to investigate casting.
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Nomenclature
Symbol Variable Unit 

V volume m3 
t time s ∆ݐ time step s 
r radius m ݓݎ  west node radius m ݁ݎ  east node radius m ∆ݎ neighbor node distance m ∆ܲݎ ݎܲ∆ east side node distance m ܧ ܹ west side node distance m 
T temperature ℃ ݊ܶ݌ +1 temperature of node p at 

new(n+1) time step ℃ 

݊ܶ݌  temperature of node p at 
old (n) time step ℃ ܶ݃ ݏܽ  inside gas temperature  ℃ ܶܽ ݎ݅  outside air temperature  ℃ ߩ density kg/m3 

Cp specific heat J/kg K ݇ heat conductivity W/m K ݇ݓ  west side cell conductivity W/m K ݇݁  east side cell conductivity W/m K ℎ݃  inside gas convective 
coefficient 

W/m2K ℎܽ  out air convective 
coefficient 

 W/m2K 

 


